Targeted sonodynamic therapy induces tumor cell quasi-immunogenic ferroptosis and macrophage immunostimulatory autophagy in glioblastoma

Biomaterials. 2024 Oct 28:315:122913. doi: 10.1016/j.biomaterials.2024.122913. Online ahead of print.

Abstract

In this study, we demonstrated the mechanism of a glioblastoma (GBM)-targeted sonodynamic therapy (SDT) strategy employing platelets loaded with a sonosensitizer based on functionalized boron nitride nanoparticles carrying chlorin e6 (BNPD-Ce6). In the in vitro study, we first found that the BNPD-Ce6-mediated sonodynamic action (SDA) induced remarkable viability loss, DNA damage, and cell death in the GBM cells (GBCs) but not macrophages. Surprisingly, the SDA-exposed GBCs displayed a ferroptotic phenotype while the SDA-exposed macrophages underwent immuno-stimulatory autophagy and potently potentiated the SDA's toxicity to the GBCs. The ferroptotic GBCs induced by the SDA were found to be quasi-immunogenic, characterized by the emission of some alarmins such as ATP, HSP90, and CRT, but absent HMGB1, a potent endogenous adjuvant. As such, the SDA-stressed GBCs were unable to stimulate the BMDMs. This defect, interestingly, could be rescued by platelets as a donor of HMGB1 which markedly enhanced the BNPD-Ce6's sonotoxicity to the GBCs. In the in vivo study, we first employed BNPD-Ce6-loaded platelets to achieve ultrasound-triggered, targeted delivery of BNPD-Ce6 in grafted intra-cranial GBMs and subsequent sonodynamic tumor damage. An SDT regimen designed based on these results slowed the growth of grafted intra-cranial GBMs and significantly increased the survival of the host animals. Pathological examination of the SDT-treated GBMs revealed tissue necrosis and destruction and validated the in vitro observations. Finally, the depletion of macrophages was found to abrogate the efficacy of the SDT in subcutaneous GBC grafts. In conclusion, the BNPD-Ce6@Plt-mediated SDT is a practicable and efficacious anti-GBM therapy. Its therapeutic mechanism critically involves a synergy of tumor cell ferroptosis, macrophage stimulation, and platelet activation induced by the SDA.

Keywords: Autophagy; Ferroptosis; Glioblastoma; Macrophages; Targeted sonodynamic therapy.