Decisive role of mDia-family formins in cell cortex function of highly adherent cells

Sci Adv. 2024 Nov;10(44):eadp5929. doi: 10.1126/sciadv.adp5929. Epub 2024 Oct 30.

Abstract

Cortical formins, pivotal for the assembly of linear actin filaments beneath the membrane, exert only minor effects on unconfined cell migration of weakly and moderately adherent cells. However, their impact on migration and mechanostability of highly adherent cells remains poorly understood. Here, we demonstrate that loss of cortical actin filaments generated by the formins mDia1 and mDia3 drastically compromises cell migration and mechanics in highly adherent fibroblasts. Biophysical analysis of the mechanical properties of the mutant cells revealed a markedly softened cell cortex in the poorly adherent state. Unexpectedly, in the highly adherent state, associated with a hyperstretched morphology with exaggerated focal adhesions and prominent high-strain stress fibers, they exhibited even higher cortical tension compared to control. Notably, misguidance of intracellular forces, frequently accompanied by stress-fiber rupture, culminated in the formation of tension- and contractility-induced macroapertures, which was instantly followed by excessive lamellipodial protrusion at the periphery, providing critical insights into mechanotransduction of mechanically stressed and highly adherent cells.

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Animals
  • Cell Adhesion*
  • Cell Movement*
  • Fibroblasts* / cytology
  • Fibroblasts* / metabolism
  • Focal Adhesions / metabolism
  • Formins* / metabolism
  • Humans
  • Mechanotransduction, Cellular
  • Mice
  • Pseudopodia / metabolism
  • Stress Fibers / metabolism

Substances

  • Formins
  • Diap1 protein, mouse