Using systems mapping to understand the constraints and enablers of solutions to plastic pollution

J Environ Manage. 2024 Oct 29:371:122994. doi: 10.1016/j.jenvman.2024.122994. Online ahead of print.

Abstract

Plastic pollution is now considered globally ubiquitous, irreversible, and a planetary boundary threat. Solutions are urgently needed but their development and application are hampered by the complexity and scale of the issue. System dynamics is a technique used to understand complex behaviours of systems through model building and is useful for conceptualising the relationships between various interacting, dynamic factors, and identifying potential intervention points within the system where specific policies or innovations might have the greatest impact or meet with the greatest resistance. Here, twenty-five participants (all scientific researchers of various career stages, disciplines and nationalities working on plastic pollution) completed a series of exercises through an interactive, iterative group model building exercise during a one-day workshop. The process culminated in the generation of a causal loop diagram, based on participants' perspectives, illustrating the dynamic factors relating to the constraints and enablers of solutions to plastic pollution. A total of 18 factors and seven feedback loops were identified. Key factors influencing the system were Effective legislation, Funding, Public education and awareness, Behaviour change, Innovation, and Effective waste management. Our findings highlight that there is no single driver, or 'silver bullet', for resolving this complex issue and that a holistic approach should be adopted to create effective and systemic change.

Keywords: Causal loop diagrams; Circular economy; Group model building; Life-cycle approach; Plastic pollution; System dynamics.