Phytotoxicity of 6PPD and its uptake by Myriophyllum verticillatum: Oxidative stress and metabolic processes

Sci Total Environ. 2024 Oct 28:177248. doi: 10.1016/j.scitotenv.2024.177248. Online ahead of print.

Abstract

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely utilized antioxidant in automobile tires and rubber goods, is frequently detected in aquatic ecosystems and poses a potential threat to aquatic organisms. However, research on the impact of 6PPD on aquatic plants is still scarce. Here, we investigated the bioaccumulation of 6PPD in Myriophyllum verticillatum (M. verticillatum) (watermilfoil), and its impacts on biochemical characteristics and metabolomics. 6PPD (10,100 mg/L) significantly inhibited the growth and photosynthetic pigment content of M. verticillatum. After 14 days of exposure to 100 μg/L 6PPD, accumulation levels of 6PPD and its metabolite 6PPDQ in M. verticillatum reached 0.52 mg/kg and 0.09 mg/kg, respectively. Moreover, 6PPD significantly induced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) enzymes and glutathione (GSH), reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), thereby mitigating oxidative damage in M. verticillatum. Furthermore, metabolic pathway analysis revealed that 6PPD has remarkable effects on amino acid and sugar metabolism. This study provides data support for understanding the toxic effects of 6PPD on aquatic plants and evaluating its potential risks.

Keywords: 6PPD; Bioconcentration; Hydrophyte; Metabolomics; Oxidative stress.