Functional Metallocenes as Cofactors Promote the Catalytic Performance of Mimetic Enzymes

Small. 2024 Oct 31:e2405851. doi: 10.1002/smll.202405851. Online ahead of print.

Abstract

Coenzymes (cofactors) are essential for bio-redox reactions, group transfer reactions, and heterogeneous reactions of bio-enzymes, as well as the auxiliary transfer of electrons or atoms to promote bio-enzyme activity. However, when mimetic enzymes are scaled to the micro or nanoscale levels, both the absence of cofactor activity and the presence of migrating internal atoms cause self-depletion, eventually limiting sustained usage. Herein, cofactor regulation, a key issue long neglected in traditional mimetic enzyme construction is addressed. In particular, the construction of a mimetic enzyme with monomeric ferrocene is reported. The artificial enzyme consists of both a catalytic center (Fe2+/3+) and a proximate structural unit (functional cyclopentadienyl). The reducing properties of cyclopentadienyl are used as a cofactor to decrease activation energy required to catalyze Fe3+ to Fe2+, lower energy barriers to increase recycling, and, finally, promote electron transfer. This ferrocene-based mimetic enzyme can achieve non-depletion cycle catalysis by keeping the structures and properties of the enzyme constant after the catalytic reaction. Thus, this in situ self-assembly construction of mimetic enzymes using functionalized proximate structural units as cofactors offers a niche concept to solve the predicament of self-depletion such as that seen in traditional mimetic enzymes.

Keywords: bio‐application; cyclic catalysis; ferrocene‐based mimic enzyme; nanoparticles.