Chronic diabetic wounds suffer from severe complications caused by long-term high levels of oxidative stress and bacterial infection. Quercetin (Que) has excellent anti-inflammatory, antioxidant, and antibacterial activity, making it a promising drug to address the above issues. To exploit the benefits of Que in a more effective and sustained way to treat diabetic wounds, carboxymethyl β-cyclodextrin (CMCD) was synthesized and conjugated to keratin, then complexed with Que to form Que@Ker-CMCD inclusion, followed by electrospinning with polyurethane (PU) to afford Que@Ker-CMCD/PU mats. The approach significantly enhanced water solubility, bioavailability, and sustained release of Que. Crucially, these mats exhibited robust antioxidant and antibacterial activities. Moreover, the mats fostered an environment conducive to cell proliferation, migration, angiogenesis, and re-epithelialization, pivotal processes in wound healing and remodeling. Consequently, a marked acceleration in remodeling chronic diabetic wounds was observed. In conclusion, this study introduces a novel therapeutic strategy that not only harnesses the multifaceted benefits of Que but also enhances its delivery and performance, offering a promising avenue for the effective treatment of chronic diabetic wounds.