TNFRSF11B contributes to tumorigenesis in many malignancies. Nevertheless, its function and underlying tumorigenic mechanism in bladder cancer (BC) has been rare. The clinical significance and relevant signaling pathway of TNFRSF11B in BC were assessed using bioinformatic analysis. The determination of TNFRSF11B expression was conducted in bladder tissues and BC cells. BC cells were subjected to functional experiments to evaluate their ability to proliferate, migrate, and invade. Cell apoptosis experiments were conducted. The protein levels of markers associated with epithelial-mesenchymal transition (EMT) and molecules linked to the PI3K/AKT pathway were assessed. To evaluate the effect of the PI3K/AKT pathway on TNFRSF11B, LY294002, a PI3K/AKT pathway inhibitor, was utilized. TNFRSF11B exhibited significant upregulation in both BC tissues and various cell lines. Inhibited TNFRSF11B expression impeded the growth, movement, infiltration of BC cells. Conversely, the ultimate outcome varied when TNFRSF11B was overexpressed. In vivo assay further confirmed the above results. Furthermore, TNFRSF11B promoted malignant traits by controlling the PI3K/AKT pathway. In BC, TNFRSF11B exhibits elevated expression levels and has a substantial tumor-promoting role in BC via the PI3K/AKT pathway. Importantly, TNFRSF11B may represent a valuable prognostic tumor marker for BC treatment.
Keywords: BC; PI3K/AKT; TNFRSF11B.
Copyright © 2024. Published by Elsevier Ltd.