The Aurivillius phase layered perovskite ferroelectric material Sr2Bi4Ti5O18 (SBTO) exhibits spontaneous polarization and piezoelectric properties, which confer significant potential for piezo-photocatalysis. Its ability to enhance electron-hole separation while providing excellent fatigue resistance positions it as a promising candidate in this field. Defects were introduced to improve the structural polarization and photoelectrochemical properties of SBTO. SBTO nanocrystals, featuring a mixed structure of hierarchically ordered mesoporous microflowers and nanosheets, were successfully synthesized via the hydrothermal method. The SBTO sample synthesized at a lower hydrothermal temperature displayed optimal oxygen vacancy concentration and exhibited superior piezoelectric-photo synergistic degradation activity for organic pollutants. Additionally, corona polarization increases the macroscopic polarization of the SBTO photocatalyst, promoting the separation of photogenerated carriers. Finite element simulations confirmed that a single flower-like SBTO structure generates a higher piezoelectric potential compared to a sheet-like morphology. In conclusion, integrating self-assembled hierarchical structure design, ferroelectric polarization, and defect engineering forms an effective strategy for achieving high-performance SBTO-based layered perovskite piezo-photocatalysts.