Super-NeRF: View-consistent Detail Generation for NeRF Super-resolution

IEEE Trans Vis Comput Graph. 2024 Nov 4:PP. doi: 10.1109/TVCG.2024.3490840. Online ahead of print.

Abstract

The neural radiance field (NeRF) achieved remarkable success in modeling 3D scenes and synthesizing high-fidelity novel views. However, existing NeRF-based methods focus more on making full use of high-resolution images to generate high-resolution novel views, but less considering the generation of high-resolution details given only low-resolution images. In analogy to the extensive usage of image super-resolution, NeRF super-resolution is an effective way to generate low-resolution-guided high-resolution 3D scenes and holds great potential applications. Up to now, such an important topic is still under-explored. In this paper, we propose a NeRF super-resolution method, named Super-NeRF, to generate high-resolution NeRF from only low-resolution inputs. Given multi-view low-resolution images, Super-NeRF constructs a multi-view consistency-controlling super-resolution module to generate various view-consistent high-resolution details for NeRF. Specifically, an optimizable latent code is introduced for each input view to control the generated reasonable high-resolution 2D images satisfying view consistency. The latent codes of each low-resolution image are optimized synergistically with the target Super-NeRF representation to utilize the view consistency constraint inherent in NeRF construction. We verify the effectiveness of Super-NeRF on synthetic, real-world, and even AI-generated NeRFs. Super-NeRF achieves state-of-the-art NeRF super-resolution performance on high-resolution detail generation and cross-view consistency.