Nanoclay Mediated Two-Pronged Strategy for Infected-Wound Healing

Nano Lett. 2024 Nov 5. doi: 10.1021/acs.nanolett.4c04422. Online ahead of print.

Abstract

Photothermal therapy (PTT) is an efficient way to combat bacterial infections and circumvent multidrug resistance. However, balancing efficacious bacterial killing and minimizing damage to the surrounding normal tissues remain a great challenge. Herein, a highly cooperative Prussian blue/kaolinite (PB/Kaol) hybrid nanosystem is constructed for antibacterial therapy to accelerate the healing of infected wounds. After hybridization with Kaol, the prepared PB/Kaol forms interfacial Al-O-Fe bonds, a fast charge transfer channel from Kaol to PB, which contributes to the enhanced photothermal effect of PB/Kaol. Additionally, the hydroxyl and Lewis acid-base sites of the Kaol surface could promote the adhesion of PB/Kaol to bacteria, thereby ensuring that as much hyperthermia as possible is focused on the bacteria and minimizing damage to the surrounding healthy tissues. Furthermore, PB/Kaol inherits the anti-inflammatory and hemostasis functions of PB and Kaol, resulting in the rapid healing of infected wounds.

Keywords: bacterial adhesion; interfacial charge reconfiguration; nanoclay; photothermal enhancement; wound healing.