In mammals, sex determination is governed by the SRY gene on the Y chromosome, redirecting gonadal development from forming ovaries to testes. Mutations or alterations in the SRY gene can significantly affect phenotypic changes and lineage-specific markers. This study aims to elucidate the role of the SRY gene in buffalo embryos using CRISPR-Cas9 technology. We designed a crRNA targeting the HMG domain of the SRY gene using the CRISPOR algorithm. Nucleofection of sgRNA-Cas9 RNPs into buffalo fibroblasts confirmed efficient cleavage at the targeted site. Using this validated guide, we investigated the role of the SRY gene in sexual determination by electroporating CRISPR-Cas9-RNPs into single-stage zygotes of buffalo. Genetic changes in the SRY gene were confirmed through sequencing, revealing mosaic blastocysts with multiple alleles and non-mosaic mutants. Mutations in SRY gene increased the expression of female lineage-specific gene Wnt4 whereas decreased the expression of male specific gene SOX9 in blastocysts, suggesting reprogramming towards female sex determination pathways. Our findings provide insights into buffalo sex differentiation mechanisms and potential applications in reproductive strategies for breeding programmes.
Keywords: CRISPR‐Cas9; buffalo; embryo; gene editing; sex determination.
© 2024 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.