MRI Tomoelastography to Assess the Combined Status of Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma

J Magn Reson Imaging. 2024 Nov 7. doi: 10.1002/jmri.29654. Online ahead of print.

Abstract

Background: Integrating vessels encapsulating tumor clusters (VETC) and microvascular invasion (MVI) (VM hereafter) is potentially useful in risk stratification of hepatocellular carcinoma (HCC). However, noninvasive assessment methods for VM are lacking.

Purpose: To investigate the diagnostic performance of tomoelastography in assessing the VM status in HCC.

Study type: Retrospective.

Population: One hundred sixty-eight patients with surgically confirmed HCC consisting of 115 training and 53 validation cohorts, divided into negative-VM and positive-VM groups with mild or severe-VMs. Of them, 127 patients completed the follow-up (median: 26.1 months).

Field strength/sequence: 3D multifrequency tomoelastography with a single-shot spin-echo echo-planar imaging sequence, and liver MRI including T1-weighted in-phase and opposed-phase gradient echo (GRE), T2-weighted turbo spin echo, diffusion-weighted imaging and dynamic contrast-enhanced T1-weighted GRE sequences at 3.0 T.

Assessment: Shear wave speed (c) and phase angle of the shear modulus (φ) were calculated on tomoelastograms. Imaging features were visually analyzed and clinical features were collected. Conventional models used clinical and imaging features while nomograms combined tomoelastography, clinical and imaging features.

Statistical tests: Univariable and multivariable logistic regression analyses, nomogram, area under the receiver operating characteristic curve (AUC), DeLong test, Kaplan-Meier analysis and log-rank test. P < 0.05 was considered statistically significant.

Results: Tumor-to-liver parenchyma ratio of c (cr) and tumor c were independent risk factors for positive-VM and severe-VM, respectively. In validation cohort, the nomograms including cr and tumor c performed significantly better than the conventional models for diagnosing positive-VM (0.84 [95% CI: 0.72-0.93] vs. 0.77 [95% CI: 0.64-0.88]) and severe-VM (0.86 [95% CI: 0.68-0.96] vs. 0.75 [95% CI: 0.55-0.89]). Patients with estimated positive-VM (9.3 months)/severe-VM (9.2 months) based on nomograms had shorter median recurrence-free survival than those with estimated negative-VM (>20.0 months)/mild-VM (18.0 months) in validation cohort.

Data conclusion: Tomoelastography based-nomograms showed good performance for noninvasively assessing VM status in patients with HCC.

Evidence level: 3 TECHNICAL EFFICACY: Stage 2.

Keywords: elasticity imaging techniques; hepatocellular carcinoma; microvascular invasion; vessels encapsulating tumor clusters.