The transformation of clinical androgen receptor (AR) antagonists into agonists driven by AR mutations poses a significant challenge in treating prostate cancer (PCa). Novel anti-AR therapeutics combating mutation-induced resistance are required. Herein, by combining structure-based virtual screening and biological evaluation, a high-affinity agonist E10 was first discovered. Then guided by the representative conformation of State 1 at the free energy landscape, the structural optimization of E10 was performed, and pure AR antagonists EL15 (IC50 = 0.94 μM) and EF2 (IC50 = 0.30 μM) were successfully identified. Both can antagonize wild-type and variant drug-resistant ARs. Therein, EF2 demonstrated potent inhibition of the AR pathway and effectively suppressed tumor growth in a C4-2B xenograft mouse model following oral administration. Further molecular dynamics simulation and mutagenesis studies revealed atomic insights into the mode of action of EF2 which may serve as a novel lead compound for developing therapeutics against AR-driven PCa.