Circulating miR-30c-2-3p has been closely related to vascular diseases, however, its role and underlying mechanisms in ischemic stroke remained unclear. Our study addressed this gap by observing elevated levels of exosomal miR-30c-2-3p in patients with acute ischemic stroke due to large artery atherosclerosis. Further investigation revealed that these exosomal miR-30c-2-3p primarily originated from macrophages within atherosclerotic plaques, exacerbating ischemic stroke by targeting microglia. Exosomes enriched with miR-30c-2-3p increased microglial inflammatory properties in vivo and aggravated neuroinflammation by inhibiting SMAD2. In summary, our findings revealed a novel mechanism whereby macrophage-derived foam cells within atherosclerotic plaques secrete exosomes with high levels of miR-30c-2-3p, thus aggravate brain damage during ischemic stroke, which serves as crucial link between the periphery and brain.
Keywords: Atherosclerosis; Exosomes; Inflammation; MiR-30c-2-3p; Microglia.
© 2024. The Author(s).