Decoding aging and cognitive functioning through spatiotemporal EEG patterns: Introducing spatiotemporal information-based similarity analysis

Chaos. 2024 Nov 1;34(11):113124. doi: 10.1063/5.0203249.

Abstract

Exploring spatiotemporal patterns of high-dimensional electroencephalography (EEG) time series generated from complex brain system is crucial for deciphering aging and cognitive functioning. Analyzing high-dimensional EEG series poses challenges, particularly when employing distance-based methods for spatiotemporal dynamics. Therefore, we proposed an innovative methodology for multi-channel EEG data, termed as Spatiotemporal Information-based Similarity (STIBS) analysis. The core of this method is to first perform state space compression of multi-channel EEG time series using global field power, which can provide insight into the dynamic integration of spatiotemporal patterns between the steady states and non-steady states of brain. Subsequently, we quantify the pairwise differences and non-randomness of spatiotemporal patterns using an information-based similarity analysis. Results demonstrated that this method holds the potential to serve as a distinguishing marker between young and elderly on both pairwise differences and non-randomness indices. Young individuals and those with higher cognitive abilities exhibit more complex macrostructure and non-random spatiotemporal patterns, whereas both aging and cognitive decline lead to more randomized spatiotemporal patterns. We further extended the proposed analytics to brain regions adversarial STIBS (bra-STIBS), highlighting differences between young and elderly, as well as high and low cognitive groups. Furthermore, utilizing the STIBS-based XGBoost model yields superior recognition accuracy in aging (93.05%) and cognitive functioning (74.29%, 64.19%, and 80.28%, respectively, for attention, memory, and compatibility performance recognition). STIBS-based methodology not only contributes to the ongoing exploration of neurobiological changes in aging but also provides a powerful tool for characterizing the spatiotemporal nonlinear dynamics of the brain and their implications for cognitive functioning.

MeSH terms

  • Adult
  • Aged
  • Aging* / physiology
  • Brain / physiology
  • Cognition* / physiology
  • Electroencephalography* / methods
  • Female
  • Humans
  • Male
  • Middle Aged
  • Spatio-Temporal Analysis
  • Young Adult