Osteoblast Growth in Quaternized Silicon Carbon Nitride Coatings for Dental Implants

Materials (Basel). 2024 Nov 4;17(21):5392. doi: 10.3390/ma17215392.

Abstract

The demand for dental implants has increased, establishing them as the standard of care for replacing missing teeth. Several factors contribute to the success or failure of an implant post-placement. Modifications to implant surfaces can enhance the biological interactions between bone cells and the implant, promoting better outcomes. Surface coatings have been developed to electrochemically alter implant surfaces, aiming to reduce healing time, enhance bone growth, and prevent bacterial adhesion. Quaternized silicon carbon nitride (QSiCN) is a novel material with unique electrochemical and biological properties. This study aimed to assess the influence of QSiCN, silicon carbide nitride (SiCN), and silicon carbide (SiC) coatings on the viability of osteoblast cells on nanostructured titanium surfaces. The experiment utilized thirty-two titanium sheets with anodized TiO2 nanotubes featuring nanotube diameters of 50 nm and 150 nm. These sheets were divided into eight groups (n = 4): QSiCN-coated 50 nm, QSiCN-coated 150 nm, SiCN-coated 50 nm, SiCN-coated 150 nm, SiC-coated 50 nm, SiC-coated 150 nm, non-coated 50 nm, and non-coated 150 nm. Preosteoblast MC3T3-E1 Subclone 4 cells (ATCC, USA) were used to evaluate osteoblast viability. After three days of cell growth, samples were assessed using scanning electron microscopy (SEM). The results indicated that QSiCN coatings significantly increased osteoblast proliferation (p < 0.005) compared to other groups. The enhanced cell adhesion observed with QSiCN coatings is likely due to the positive surface charge imparted by N+.

Keywords: antimicrobial; bacterial adhesion; biocompatibility; dental implants; nanotechnology; surface coatings.