The completion of the Human Genome Project and tremendous advances in automated high-throughput genetic analysis technologies have enabled explosive progress in the field of genetics, which resulted in countless discoveries of novel genes and pathways. Many phenotype- or disease-associated single nucleotide polymorphisms (SNPs) with a high statistical significance have been identified through numerous genome-wide association studies (GWAS), and various polygenic risk scoring (PRS) schemes have been proposed to identify individuals with a high risk for a certain trait or disorder. Meanwhile, medical education in genetics has lagged far behind, leaving many physicians and healthcare providers unprepared in the genomic era. Thus, there is an urgent need to educate physicians and healthcare providers with basic knowledge and skills in genetics. To facilitate this, some basic terminologies and concepts are discussed in this review. In addition, some important considerations in delineating and incorporating clinical genetic testing in the diagnosis and management of a monogenic disorder are illustrated in a stepwise fashion. Furthermore, the effects of disease-associated SNPs represented by a PRS scheme clearly demonstrated that even the phenotypes of a monogenic disorder due to the same pathogenic variant in family members are modulated by the polygenic background. In human genetics, despite these explosive advancements, we are still far from clearly deciphering the interplay of gene variants to effect unique characteristics in an individual. In addition, sophisticated genome or gene directed therapies are being investigated for numerous disorders. Therefore, evolution in the field of genetics is likely to continue into the foreseeable future. In the meantime, much emphasis should be placed on educating physicians and healthcare professionals to be well-versed and skillful in the clinical use of genetics so that they can fully embrace the new era of precision medicine.
Keywords: Clinical genetics; causal gene variant; monogenic disorder; polygenic disorder; single nucleotide polymorphism (SNP).
2024 AME Publishing Company. All rights reserved.