The Masculinizer (Masc) gene plays a crucial role in masculinization during insect embryonic gonadal development. Nevertheless, the Masc expression pattern and function in crabs remain largely unknown. In the present study, we screened and validated the Masc gene from transcriptome data of mud crab S. paramamosain. The Masc relative transcript level in the testis was significantly higher than that of ovaries and other tissues, as measured by quantitative real-time PCR. In situ hybridization showed that Masc exhibited a significant signal throughout all stages of testicular development. The phylogenetic analysis revealed conservation in the evolution of crustaceans, potentially indicating its functional importance. Masc RNA interference showed that the expression of testis bias-related genes decreased significantly while the ovary bias-related genes increased significantly. Transcriptome data suggested that Masc regulates several signaling pathways, including the mTOR, Wnt, insulin, and other sex-related pathways. These results indicate that Masc may play a role in mud crab male development with possible application in sex control in aquaculture.
Keywords: Male development; Masc; RNA interference; Scylla paramamosain; Transcriptome.
Copyright © 2024 Elsevier B.V. All rights reserved.