Objectives: Kratom preparation containing Mitragyna speciosa Korth plant is frequently used as a recreational drug. Mitragynine, a major alkaloid isolated from M. speciosa, is often detected concurrently with other drugs during forensic analysis, indicating a safety concern. P-glycoprotein (P-gp) is a multidrug transporter. Modulation of P-gp transport activity by drugs or herbal compounds in the brain may lead to drug-herb interactions, resulting in neurotoxicity. We aim to determine the effects of mitragynine on the P-gp regulation and possible neurotoxicity.
Methods: The effects of mitragynine on the P-gp regulation were investigated in human brain capillary endothelial cells (hCMEC/D3) using molecular docking and dynamic simulation and an optimized bidirectional transport assay, respectively. Repeated-dose treatment and neurotoxicity assessment were carried out using a blood-brain barrier model and polimerase chain reaction (PCR) array.
Key findings: Mitragynine inhibits the P-gp transport activity via binding onto the nucleotide-binding domain site and forms a stable interaction with the P-gp protein complex. Nontoxic concentrations of mitragynine (<4 μM) and substrate drugs (0.001 μM) in the cells significantly enhanced endothelial cell permeability and elicited signs of neurotoxicity in PC-12 cells.
Conclusions: Mitragynine is likely a P-gp inhibitor, hence concurrent administration of kratom products with P-gp substrates may lead to clinically significant interactions and neurotoxicity.
Keywords: P-glycoprotein; bidirectional transport assay; drug interactions; kratom; mitragynine; neurotoxicity.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Royal Pharmaceutical Society. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].