The mechanism of short hypha formation and high protein production system mediated by cell wall integrity signaling pathway in Aspergillus niger

Int J Biol Macromol. 2024 Nov 12:137413. doi: 10.1016/j.ijbiomac.2024.137413. Online ahead of print.

Abstract

Aspergillus niger is a cell factory widely used in industries to produce proteases, organic acids, drugs, and other substances. The hyphal morphology of A. niger is a complex differentiated elongated tubular structure, which limits its basic research and application. In this study, the mpkA, bck1, steC, and Tpk2 genes were successfully deleted using a quick way to knock out genes based on the RNP (Ribonucleoprotein) complex. The study showed that the knockout of mpkA and bck1 kinase gene strains resulted in smaller, denser colonies, short rod-shaped hypha, and a significant increase in glucoamylase secretion. The mechanism of short hypha formation and high protein production for A. niger is the cell wall integrity signaling (CWIS) pathway. The CWIS pathway passed through the bck1-mkkA-mpkA tertiary kinase to deliver phosphorylation signals to the rlmA transcription factor, which regulated the expression of the cell wall synthesis gene agsA, thus regulating hyphal morphology. The mpkA kinase regulated the expression of the transcription factor amyR, which affected the expression of the genes glaA and amyA, thus enhancing the expression of proteins in A. niger. This study provides a strategy for the regulation of hyphal morphology and promotes the application of A. niger in industrial production.

Keywords: Aspergillus niger; Cell wall integrity signaling pathway; Morphology.