The protective roles of Oryza glumaepatula and phytohormone in enhancing rice tolerance to cadmium stress by regulating gene expression, morphological, physiological, and antioxidant defense system

Environ Pollut. 2024 Nov 13:125311. doi: 10.1016/j.envpol.2024.125311. Online ahead of print.

Abstract

The heavy metal cadmium (Cd) is highly poisonous and has received significant attention from environmental scientists due to its harmful impacts on plants. Oryza glumaepatula is a wild rice that contains useful genes against biotic and abiotic stresses. Therefore, the current study used SG007, a single-segment substitution line (SSSL), generated by crossing O. glumaepatula with an elite rice cultivar (HJX74), to evaluate the resistance potential against Cd. Moreover, we assessed the efficacy of strigolactone GR24 (1 μM) against Cd toxicity (100 μM) by investigating physiological, biochemical, and molecular mechanisms in both cultivars (i.e., SG007 and HJX74). The findings of this study revealed that Cd toxicity declined the chlorophyll a, chlorophyll b, and carotenoids by 50%, 20%, and 44% in SG007, and 58%, 39%, and 59% in HJX74 by enhancing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) by 113%, 184%, and 119% in SG007 and 248%, 273% and 195% in HJX74, respectively. GR24 improved growth under Cd stress in both cultivars, and SG007 exhibited better plant growth parameters, antioxidant enzymatic activities, nitric oxide synthase (NOS), and nitric oxide (NO) levels than HJX74 under Cd toxicity. GR24 with SG007 regulated expressions of Cd transporters and reduced the cytological disruptions in cell organelles. The combined utilization of SG007 and GR24 reduced Cd accumulation and oxidative stress and improved plant growth parameters and enzymatic activities. In conclusion, our study highlights the potential of utilizing SG007 in conjunction with GR24 as a practical strategy to mitigate Cd pollution in rice. The results not only underscore the beneficial effects of strigolactone GR24 in alleviating Cd-induced stress but also emphasize the valuable genetic traits of O. glumaepatula in developing rice lines with enhanced tolerance to heavy metals, offering broader implications for sustainable agriculture and crop improvement in contaminated environments.

Keywords: Cadmium toxicity; OsHMA2; Oxidative stress; Strigolactone; Wild rice.