Silk fibroin aerogels with AIE-featured berberine and MXene for rapid hemostasis and efficient wound healing

Int J Biol Macromol. 2024 Nov 13:137629. doi: 10.1016/j.ijbiomac.2024.137629. Online ahead of print.

Abstract

Rapid hemostasis and wound healing are crucial in emergency trauma situations for saving patients' lives. Traditional hemostatic materials often have drawbacks such as slow hemostasis and susceptibility to post-hemostasis bacterial infections. Therefore, there is an urgent need for advanced wound dressing materials that can provide both rapid hemostasis and antimicrobial properties. In this study, we designed and fabricated a biocompatible hemostatic silk fibroin (SF) aerogel loaded with aggregation-induced emission (AIE)-featured berberine (BBr) and Ti3C2Tx MXene. The resulting SFMB aerogel demonstrates robust mechanical properties and a porous structure that enables quick hemostasis. This aerogel exhibits photodynamic and photothermal responses for antimicrobial activity, releases BBr upon light exposure to enhance bacterial-killing efficiency (99.33 % in vitro and 99.09 % in vivo), and effectively promotes the healing of infected wounds in vivo through combined photothermal/photodynamic antibacterial and anti-inflammatory mechanisms. Furthermore, the aerogel shows high hemocompatibility and cytocompatibility, supporting its potential biomedical applications. Overall, the synthesized SFMB aerogel holds promise for treating bacteria-infected wounds and for use in first aid applications in clinical settings.

Keywords: Aerogel; Anti-inflammatory; Antibacterial; Hemostatic; Wound healing.