Perceiving substrate-borne vibrations is a fundamental component of tactile perception. How location (somatotopy) and frequency tuning (tonotopy) of vibrations are integratively processed is poorly understood. Here we addressed this question using in vivo electrophysiology and two-photon calcium imaging along the dorsal column-medial lemniscal pathway. We found that both frequency and location are organized into structured maps in the dorsal column nuclei (DCN). Both maps are intimately related at the fine spatial scale, with parallel map gradients that are consistent across the depth of the DCN and preserved along the ascending pathway. The tonotopic map only partially reflects the distribution of end organs in the skin and deep tissue; instead, the emergence of the fine-scale tonotopy is due to the selective dendritic sampling from axonal afferents, already at the first synaptic relay. We conclude that DCN neural circuits are key to the emergence of these two fine-scale topographical organizations in early somatosensory pathways.
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.