To fully utilize the wastes of the traditional Chinese herbs, a highly functionalized fluorescent carbon nano dots (CDs) based ferric ion sensor was prepared from forsythia residue via a one-step hydrothermal method. Under transmission electron microscope (TEM), the CDs were observed to be spherical with the diameter in the range of 5-20 nm. Comprehensive analyses documented the CDs' favorable morphology, diverse functional groups, high water solubility, remarkable optical properties, and exceptional stability under various environmental conditions. Moreover, the CDs exhibited good optical properties with vivid green photoluminescence (PL) when they were exposed to ultraviolet (UV) light. Furthermore, the prepared CDs demonstrated selective fluorescence quenching behavior towards ferric ions with satisfactory sensitivity and a low limit of detection (LOD) of 4.3 µM. Additionally, the CDs displayed good selectivity towards Fe3+ and the least interference with several other metal ions. Consequently, this strategy could be effectively applied to real water samples, demonstrating its potential for broader applications.
Keywords: Carbon dots; Fe3+; Fluorescence sensor; Forsythia residue.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.