Mesomycoplasma (Mycoplasma) ovipneumoniae dihydrolipoamide dehydrogenase is an immunogenic plasminogen binding protein and a putative adhesin

Vet Microbiol. 2024 Nov 12:299:110302. doi: 10.1016/j.vetmic.2024.110302. Online ahead of print.

Abstract

The interaction of Mesomycoplasma (Mycoplasma) ovipneumoniae (M. ovipneumoniae) with host cells is a pivotal step in the infection process, underlining the necessity to develop vaccines and therapeutic approaches targeting the pathogen's key invasion mechanisms. The bacterium's capacity for adherence, invasion, and subsequent evasion of the host immune response underpins its pathogenicity, rendering adherence genes feasible vaccine targets. This study focuses on pyruvate dehydrogenase complex component E3 (PdhD), a membrane-anchored surface protein implicated in these pathogenic processes. Bioinformatics analysis reveals the conservation of PdhD sequence within M. ovipneumoniae. Membrane protein extraction, immunoblotting and ELISA assay have confirmed the presence of PdhD on the M. ovipneumoniae surface and cytoplasm, suggesting its multifunctionality. Our research employed antibody inhibition assays to characterize the bacterial adhesion suppression by anti-PdhD antibodies, complemented by bactericidal complement assays, supporting its candidacy as a putative vaccine target. The ELISA binding assay substantiated that PdhD binded to plasminogen (Plg) in a dose-dependent manner. Notably, PdhD is also involved in biofilm formation. The inhibitory effect of anti-PdhD sera on biofilm formation is congruent with novel therapeutic strategies targeting related mycoplasmas. This study reports the characterization of the first virulence-associated protein PdhD of M. ovipneumoniae and suggests its potential as a vaccine target to combat M. ovipneumoniae infection.

Keywords: Adhesins; Biofilm; Dihydrolipoamide dehydrogenase; Mycoplasma ovipneumoniae; Plasminogen.