The fine specificity of mAb F28C4 to myelin basic protein (MBP), acetyl residues 1-9, has been compared with the previously described specificity of an encephalitogenic T cell clone, PJR-25. F28C4 has been found to express a cross-reactive idiotope (CRI) that is shared with MBP acetyl peptide 1-9-specific TCR. The CRI seems to be located at or near the Ag-combining site of F28C4 and the TCR and, thus, might possibly result from overlapping epitope specificity. We tested the fine epitope specificity of F28C4 by using alanine-substituted peptide analogues and found that residues critical for TCR recognition, Cln3 and Pro6, are also necessary for F28C4 recognition. By using nuclear magnetic resonance, we found that the MBP acetyl peptide 1-9 binds F28C4 in an extended conformation and that the central residues are more tightly bound than the terminal residues, much like the MBP-TCR interaction. Furthermore, sequence homology (75% overall) was found between the regions that contained CDR3 of F28C4 VL and VH and the VDJ junction of the TCR V beta. This homology is not shared by other Ig CDR3 regions and arises, in part, because F28C4 uses an unusual V lambda light chain, V lambda x. Thus, F28C4 shares a CRI with the TCRs, possibly as a result of having similar fine epitope specificity and sequence homology. The anti-CRI mAb can down-modulate experimental allergic encephalomyelitis; thus, it is possible that Abs that are similar to F28C4 may play an important immunoregulatory role in experimental allergic encephalomyelitis in vivo.