The entry of human immunodeficiency virus type 1 into cells proceeds via a fusion mechanism that is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. Species- and tissue-specific restrictions to viral entry suggested the participation of additional membrane components in the postbinding fusion events. In a previous study (H. Golding, J. Manischewitz, L. Vujcic, R. Blumenthal, and D. Dimitrov, J. Virol. 68:1962-1968, 1994), it was found that phorbol myristate acetate (PMA) inhibits human immunodeficiency virus type 1 envelope-mediated cell fusion by inducing down modulation of an accessory component(s) in the CD4-expressing cells. The fusion inhibition was seen in a variety of cells, including T-cell transfectants expressing engineered CD4 receptors (CD4.401 and CD4.CD8) which are not susceptible to down modulation by PMA treatment. In the current study, it was found that preincubation of A2.01.CD4.401 cells with soluble monomeric gp120 for 1 h at 37 degrees C primed them for PMA-induced down modulation (up to 70%) of the tailless CD4 receptors. The gp120-priming effect was temperature dependent, and the down modulation may have occurred via clathrin-coated pits. Importantly, nonhuman cell lines expressing tailless CD4 molecules did not down modulate their CD4 receptors under the same conditions. The gp120-dependent PMA-induced down modulation of tailless CD4 receptors could be efficiently blocked by the human monoclonal antibodies 48D and 17B, which bind with increased avidity to gp120 that was previously bound to CD4 (M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski, J. Virol. 67:3978-3988, 1993). These findings suggest that gp120 binding to cellular CD4 receptors induces conformational changes leading to association of the gp120-CD4 complexes with accessory transmembrane molecules that are susceptible to PMA-induced down modulation and can target the virions to clathrin-coated pits.