Cumulative thrombocytopenia is a dose-limiting toxicity of dose-intensive chemotherapy for advanced breast cancer. In this phase I study, we have studied the hematologic toxicity associated with sequential interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF; molgramostim) administration after multiple cycles of FLAC (5-fluorouracil, leucovorin, doxorubicin, cyclophosphamide) chemotherapy compared with that after concurrent cytokine administration or to each cytokine administered alone. Ninety-three patients with advanced breast cancer were treated with five cycles of FLAC chemotherapy and either IL-3 alone, GM-CSF alone, sequential IL-3 and GM-CSF administered by schedule A (5 days of IL-3 followed by 10 days of GM-CSF) or schedule B (9 days of IL-3 followed by 6 days of GM-CSF), or concurrent administration of IL-3 and GM-CSF for 15 days. Cohorts of patients were treated with one of four dose levels of IL-3 (1,2.5, 5, and 10 micrograms/kg) administered subcutaneously for each schedule of cytokine administration. The GM-CSF dose in all schedules was 5 micrograms/kg/day. Sequential IL-3 and GM-CSF (schedule B) was associated with higher platelet nadirs, shorter durations of platelet counts less than 50,000/microL, and the need for fewer platelet transfusions over five cycles of FLAC chemotherapy compared with concurrent cytokines, sequential IL-3 and GM-CSF schedule A, and GM-CSF alone. Concurrent IL-3 and GM-CSF was associated with unexpected platelet toxicity. The duration of granulocytopenia after FLAC chemotherapy was significantly worse with IL-3 alone compared with each of the GM-CSF-containing cytokine regimens. Although no cycle 1 maximum tolerated dose for IL-3 was defined in this study, 5 micrograms/kg was well tolerated over multiple cycles of therapy and is recommended for future studies. The data from this phase I study suggest that sequential IL-3 and GM-CSF with IL-3 administered for 9 days before beginning GM-CSF may be superior to shorter durations of IL-3 administered sequentially with GM-CSF, to concurrent IL-3 and GM-CSF, and to either colony-stimulating factor alone in ameliorating the cumulative hematologic toxicity associated with multiple cycles of FLAC chemotherapy. Additional studies of sequential IL-3 and GM-CSF are warranted.