We have examined a panel of gynecological sarcomas for microsatellite instability. The genomic DNA from 11 of 44 sarcomas contained somatic alterations in the lengths of one or more di-, tri-, tetra-, or pentanucleotide microsatellite sequence markers, and 6 of these cases had alterations in two or more markers. In addition, di-, tri-, and tetranucleotide microsatellites were found to be highly unstable in single cell clones of two cell lines derived from a uterine mixed mesodermal tumor. Since such instability is characteristic of cells defective in postreplication mismatch repair, we examined mismatch repair activity in extracts made from these lines. Both extracts were repair deficient, while an extract of another gynecological sarcoma cell line not exhibiting microsatellite instability was repair proficient. The repair deficiency was complemented by a colon tumor cell extract that was defective in the hMLH1 protein but not by an extract defective in hMSH2 protein. This suggested that the defect in the uterine sarcoma line could be in hMSH2. Subsequent analysis of the gene revealed a 2-bp deletion in exon 14, leading to premature truncation of the hMSH2 protein at codon 796 and no detectable wild-type gene present. These data suggest that the microsatellite instability observed in these cell lines, and possibly in a significant number of gynecological sarcomas, is due to defective postreplication mismatch repair. There was no apparent correlation with microsatellite instability and clinical outcome.