The purification, characterization and analysis of primary and secondary-structure of prolyl oligopeptidase from human lymphocytes. Evidence that the enzyme belongs to the alpha/beta hydrolase fold family

Eur J Biochem. 1995 Oct 15;233(2):432-41. doi: 10.1111/j.1432-1033.1995.432_2.x.

Abstract

Prolyl oligopeptidase was isolated and purified to homogeneity from human lymphocytes, yielding a specific activity of 7780 mU/mg. The molecular mass using size-exclusion chromatography matches the 76 kDa obtained by SDS/PAGE. This provides evidence that prolyl oligopeptidase is a monomer. The isoelectric point is 4.8 as judged by isoelectric focusing in free solution. Di-isopropyl fluorophosphate and phenylmethylsulphonyl fluoride completely abolish the activity, classifying the enzyme as a serine proteinase. The inhibition by p-chloromercuribenzoic acid indicates the importance of a free sulfhydryl group near the active-site. alpha 1-Casein and ornithine decarboxylase, two proteins containing a PEST sequence, inhibit prolyl oligopeptidase, but were not hydrolyzed. This demonstrates that prolyl oligopeptidase is not participating in the metabolism of proteins according to a PEST-dependent pathway. alpha 1-Antitrypsin partially inhibits the enzyme but in contrast, aprotinin does not. Its inability to cleave corticotropin-releasing factor, ubiquitin, albumin and aprotinin, together with the hydrolysis of bradykinin between Pro7-Arg8 confirms the affinity of prolyl oligopeptidase for small peptides. Multiple sequence alignment does not reveal any similarity with proteases of known tertiary structure. Secondary-structure prediction displays striking similarity with dipeptidyl peptidase IV and acylaminoacyl peptidase. Two characteristic features of the members of the prolyl oligopeptidase family of serine proteases are high-lighted: the linear arrangement of the catalytic triad is nucleophile-acid-base and the proteolytic cleavage releasing the catalytically active C-terminal region of around 500 amino acids from the N-terminal sequence. Secondary structure prediction and comparison of the active-site of serine proteinases with known three-dimensional coordinates prove that Asp641 is the third member of the catalytic triad. The secondary structural organization of the protease domain of prolyl oligopeptidase is in accordance with the alpha/beta hydrolase fold.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Humans
  • Lymphocytes / enzymology*
  • Molecular Sequence Data
  • Prolyl Oligopeptidases
  • Protein Structure, Secondary*
  • Serine Endopeptidases / chemistry
  • Serine Endopeptidases / isolation & purification*
  • Serine Endopeptidases / metabolism

Substances

  • Serine Endopeptidases
  • PREPL protein, human
  • Prolyl Oligopeptidases

Associated data

  • GENBANK/X74496