In this paper we report the serum antiprotease screening and the biochemical and functional characteristics of neutrophils in a variety of mouse strains with different susceptibilities for developing a protease-mediated injury. C57Bl/6J mice and their mutants tight-skin and pallid have a lower serum elastase inhibitory capacity (-30, -65 and -70% respectively) than other inbred strains (i.e. NMRI and Balb/c, which both have similar values). We demonstrate that these values are a consequence of a decreased concentration of the alpha 1-protease inhibitor for elastase [PI(E)], which is the major serum inhibitor of elastase and cathepsin G. In addition, neutrophil lysosomal dysfunctions characterized by abnormally high contents of elastase and cathepsin G, or defective lysosomal secretion are observed in tight-skin and pallid mice respectively. Another C57Bl/6J mutant with lysosomal abnormalities is the beige mouse. Negligible amounts of elastase and cathepsin G, as well as defective neutrophil degranulation, have been described previously in this strain. We found, however, discrete amounts of a latent form of neutrophil elastase that undergoes a spontaneous activation by a protease-dependent mechanism. We also report that neutrophil cathepsin G in this mouse is tightly bound to lysosomal membranes, but is released in near normal quantities during exocytosis. Cytosolic elastase and cathepsin G inhibitors, which were previously reported as being specific for the beige neutrophils, have also been detected in all the examined strains. Neutrophil functions, lysosomal enzyme content and serum antiprotease screening may represent key elements in the protease-antiprotease balance and may explain the different interstrain susceptibility to developing lesions in which an elastolytic activity has been implicated.