The bcl-2 gene product has been shown to prevent apoptotic cell death. We have now investigated the bcl-2 protein expression by resting and activated mature T cell populations. Freshly isolated CD45RO+ T cells within CD4+ and CD8+ subsets expressed significantly less bcl-2 than CD45RO- (CD45RA+) T cells (p < 0.001). When CD45RA+ T cells within both CD4+ and CD8+ subsets were activated in vitro, the transition to CD45RO phenotype was associated with a decrease in bcl-2 expression. Patients with acute viral infections such as infectious mononucleosis caused by Epstein-Barr virus infections or chickenpox, resulting from varicella zoster virus infection, had circulating populations of activated CD45RO+ T cells which also showed low bcl-2 expression. In these patients, a significant correlation was seen between low bcl-2 expression by activated T cells and their apoptosis in culture (r = 0.94, p < 0.001). These results suggest that the primary activation of T cells leads to the expansion of a population that is destined to perish unless rescued by some extrinsic event. Thus the suicide of CD45RO+ T cells could be prevented by the addition of interleukin 2 to the culture medium which resulted in a concomitant increase in the bcl-2 expression of these cells. Alternatively, apoptosis was also prevented by coculturing the activated T lymphocytes with fibroblasts, which maintained the viability of lymphoid cells in a restinglike state but with low bcl-2 expression. The paradox that the CD45RO+ population contains the primed/memory T cell pool yet expresses low bcl-2 and is susceptible to apoptosis can be reconciled by the observations that maintenance of T cell memory may be dependent on the continuous restimulation of T cells, which increases their bcl-2 expression. Furthermore, the propensity of CD45RO+ T cells to extravasate may facilitate encounter with fibroblast-like cells in tissue stroma and thus be an important additional factor which promotes the survival of selected primed/memory T cells in vivo.