Voltage-dependent Ca2+ channels are modulated by complex interactions with the alpha 2 delta subunit. In vitro translation was used to demonstrate a single transmembrane topology of the alpha 2 delta subunit in which all but the transmembrane sequence and 5 carboxy-terminal amino acids are extracellular. The glycosylated extra-cellular domain is required for current stimulation, as shown by coexpression of truncated alpha 2 delta subunits with alpha 1A and beta 4 subunits in Xenopus oocytes and deglycosylation with peptide-N-glycosidase F. However, coexpression of the transmembrane domain-containing delta subunit reduced the stimulatory effects of full-length alpha 2 delta subunits and substitution of a different transmembrane domain resulted in a loss of current stimulation. These results support a model whereby the alpha 2 delta transmembrane domain mediates subunit interactions and the glycosylated extracellular domain enhances current amplitude.