The muscarinic activation of rabbit prevertebral sympathetic neurons was studied in non-dissociated coeliac and superior mesenteric ganglia using whole-cell patch-clamp techniques. In the presence of nicotinic blockers, carbachol, muscarine and oxotremorine-M (1-50 microM) induced tonic firing by activating a persistent inward current. These effects were abolished by atropine. They persisted when the M-current was blocked with Ba2+ (1 mM) and intracellular Cs+. The muscarinic inward current was found to be time- and voltage-dependent. It peaked at -60 mV, decreased at large hyperpolarizations and was tonically activated between -110 and -20 mV, which gave steady-state I-V curves an N-shape between -96 and -54 mV. The negative slope accounted for the large hyperpolarizing responses generated by current pulses in carbachol-treated cells. The muscarinic current was abolished when Na+ was replaced by choline, Tris+, sucrose, N-methyl-D-glucamine and Cs+ but not Li+. It was resistant to tetrodotoxin (3 microM), amiloride (3 microM), benzamil (10 microM) and tetraethylammonium (5-20 mM). No involvement of K+ and Cl- could be detected. We therefore styled it INa,M, in reference to its ionic selectivity and its coupling to muscarinic receptors. Low Ca(2+)-Mg2+ salines enhanced the Na,M-current. The current was blocked by Cd2+, Co2+, La3+ (1 mM) and Ba2+ (5 mM) but insensitive to methoxyverapamil hydrochloride, nicardipine, nifedipine and omega-conotoxin MVII A (2-20 microM). These effects were ascribed to the binding of di- and trivalent ions to the Na,M-channels. Spike bursts transiently blocked INa,M. With high intracellular ethylene glycol bis(b-aminoethyl ether)-N,N'-tetraacetic acid or 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (20-50 mM), this effect was reduced, whereas INa,M persisted in long-term recordings and its amplitude increased twofold, indicating that intracellular calcium negatively regulated the Na,M-channels. We conclude that we have described a novel muscarinic receptor-coupled channel which appears to play a major part in regulating the firing behaviour of sympathetic neurons.