The chemokine receptors CXCR4 and CCR5 have recently been shown to act as coreceptors, in concert with CD4, for human immunodeficiency virus-type 1 (HIV-1) infection. RANTES and other chemokines that interact with CCR5 and block infection of peripheral blood mononuclear cell cultures inhibit infection of primary macrophages inefficiently at best. If used to treat HIV-1-infected individuals, these chemokines could fail to influence HIV replication in nonlymphocyte compartments while promoting unwanted inflammatory side effects. A derivative of RANTES that was created by chemical modification of the amino terminus, aminooxypentane (AOP)-RANTES, did not induce chemotaxis and was a subnanomolar antagonist of CCR5 function in monocytes. It potently inhibited infection of diverse cell types (including macrophages and lymphocytes) by nonsyncytium-inducing, macrophage-tropic HIV-1 strains. Thus, activation of cells by chemokines is not a prerequisite for the inhibition of viral uptake and replication. Chemokine receptor antagonists like AOP-RANTES that achieve full receptor occupancy at nanomolar concentrations are strong candidates for the therapy of HIV-1-infected individuals.