An inwardly rectifying potassium channel predominantly expressed in glial cells, Kir4.1/KAB-2, has a sequence of Ser-Asn-Val in its carboxyl-terminal end, suggesting a possible interaction with an anchoring protein of the PSD-95 family. We examined the effects of PSD-95 on the distribution and function of Kir4.1 in a mammalian cell line. When Kir4.1 was expressed alone, the channel immunoreactivity was distributed homogeneously. In contrast, when co-expressed with PSD-95, prominent clustering of Kir4.1 in the cell membrane occurred. Kir4.1 was co-immunoprecipitated with PSD-95 in the co-expressed cells. Glutathione S-transferase-fusion protein of COOH terminus of Kir4.1 bound to PSD-95. These interactions disappeared when the Ser-Asn-Val motif was deleted. The magnitude of whole-cell Kir4.1 current was increased by 2-fold in cells co-expressing Kir4.1 and PSD-95 compared with cells expressing Kir4. 1 alone. SAP97, another member of the PSD-95 family, showed similar effects on Kir4.1. Furthermore, we found that Kir4.1 as well as SAP97 distributed not diffusely but clustered in retinal glial cells. Therefore, PSD-95 family proteins may be a physiological regulator of the distribution and function of Kir4.1 in glial cells.