Both the TATA and CCAAT boxes are widespread promoter elements and their binding proteins, TBP and NF-Y, are extremely conserved in evolution. NF-Y is composed of three subunits, NF-YA, NF-YB and NF-YC, all necessary for DNA binding. NF-YB and NF-YC contain a putative histone-like motif, a domain also present in TBP-associated factors (TAFIIs) and in the subunits of the transcriptional repressor NC2. Immunopurification of holo-TFIID with anti-TBP and anti-TAFII100 antibodies indicates that a fraction of NF-YB associates with TFIID in the absence of NF-YA. Sedimentation velocity centrifugation experiments confirm that two pools of NF-YB, and most likely NF-YC, exist: one associated with NF-YA and binding to the CCAAT box; another involved in high molecular weight complexes. We started to dissect NF-Y-TFIID interactions by showing that: (i) NF-YB and NF-YC interact with TBP in solution, both separately and once bound to each other; (ii) short stretches of both NF-YB and NF-YC located within the evolutionary conserved domains, adjacent to the putative histone fold motifs, are necessary for TBP binding; (iii) TBP single amino acid mutants in the HS2 helix, previously shown to be defective in NC2 binding, are also unable to bind NF-YB and NF-YC.