Defects in the xeroderma pigmentosum complementation group A-correcting (XPA) gene, which encodes a component of the nucleotide excision repair (NER) pathway, are associated with the cancer-prone human disease xeroderma pigmentosum. We previously generated mice lacking the XPA gene, which develop normally but are highly sensitive to ultraviolet-B and 7,12-dimethylbenz[a] anthracene-induced skin tumors. Here we report that XPA-deficient mice spontaneously developed hepatocellular adenomas at a low frequency as they aged. Furthermore, oral treatment of XPA-deficient mice with the carcinogen benzo[a]pyrene (B[a]P) resulted in the induction of mainly lymphomas. These tumors appeared earlier and with a higher incidence than in B[a]P-treated wild-type and heterozygous mice. Our results show for the first time that XPA-deficient mice also displayed an increased sensitivity to developing tumors other than tumors of the skin.