Adenosine deaminase (ADA) is an essential enzyme of purine metabolism that is enriched at the maternal-fetal interface of mice throughout postimplantation development. During early postimplantation stages Ada is highly expressed in both maternally derived decidual cells and zygotically derived trophoblast cells. For the current study we utilized genetically modified mice to delineate the relative contribution and importance of decidual and trophoblast ADA at the maternal-fetal interface. In females genetically engineered to lack decidual ADA a striking pattern of expression was revealed in giant trophoblast cells that surround the early postimplantation embryo. Embryos within gestation sites lacking both decidual and trophoblast ADA died during the early postimplantation period, whereas expression in trophoblast cells alone was sufficient for survival through this period. Severe disturbances in purine metabolism were observed in gestation sites lacking decidual ADA, including the accumulation of the potentially toxic ADA substrates adenosine and 2'-deoxyadenosine. These experiments provide genetic evidence that Ada expression at the maternal-fetal interface is essential for early postimplantation development in mice.