The Vif protein of human immunodeficiency virus type 1 is required for productive replication in peripheral blood lymphocytes. Previous reports suggest that vif-deleted viruses are limited in replication because of a defect in the late steps of the virus life cycle. One of the remaining questions is to determine whether the functional role of Vif involves a specific interaction with virus core proteins. In this study, we demonstrate a direct interaction between Vif and the Pr55Gag precursor in vitro as well as in infected cells. No interaction is observed between Vif and the mature capsid protein. The Pr55Gag-Vif interaction is detected (i) in the glutathione S-transferase system, with in vitro-translated proteins demonstrating a critical role of the NC p7 domain of the Gag precursor; (ii) with proteins expressed in infected cells; and (iii) by coimmunoprecipitation experiments. Deletion of the C-terminal 22 amino acids of Vif abolishes its interaction with the Pr55Gag precursor. Furthermore, point mutations in the C-terminal domain of Vif which have been previously shown to abolish virus infectivity and binding to cell membranes dramatically decrease the Gag-Vif interaction. These results suggest that the interaction between Vif and the pr55Gag precursor is a critical determinant of Vif function.