The purposes of this study was to determine the relationship between broadband ultrasound attenuation (BUA) and bone mineral density (BMD) measured at different regions of the calcaneus with identical site-matched regions of interest (ROIs). Dual-energy X-ray absorptiometry (DXA) measurements of the calcaneus and BUA imaging were performed in 30 women (15 premenopausal and 15 postmenopausal). Four square ROIs were located in the great tuberosity and one square ROI in the foramen calcaneus. A ROI adapted to the shape and size of the whole calcaneus was also considered. All ROIs were analyzed three times with both techniques to minimize intra-observer variability. The correlation coefficient between attenuation and frequency was used as an index of BUA measurement error. Before accepting a measurement of BUA in inhomogeneous material, it could be useful to map the spatial variations of the measurement error. In all ROIs we found the BUA and BMD were strongly related (r = 0.78-0.91, p < 0.001). The correlation between BUA and BMD was slightly higher in the inferior part of the posterior tuberosity than in the superior part and in the foramen calcaneus. The very high correlation between attenuation and frequency found in all ROIs (r = 0.99) suggests that measurement errors of propagation were probably not significant. Ultrasound imaging yields the opportunity for studying the spatial acoustic properties in the calcaneus and their relation to bone mass or structural parameters provided by independent imaging techniques. BUA measured with current transmission techniques reflects mainly bone mass, and microarchitecture to a smaller extent.