Endurance exercise training induces a rapid increase in the GLUT-4 isoform of the glucose transporter in muscle. In fasted rats, insulin-stimulated muscle glucose transport is increased in proportion to the increase in GLUT-4. There is evidence that high muscle glycogen may decrease insulin-stimulated glucose transport. This study was undertaken to determine whether glycogen supercompensation interferes with the increase in glucose transport associated with an exercise-induced increase in GLUT-4. Rats were trained by means of swimming for 6 h/day for 2 days. Rats fasted overnight after the last exercise bout had an approximately twofold increase in epitrochlearis muscle GLUT-4 and an associated approximately twofold increase in maximally insulin-stimulated glucose transport activity. Epitrochlearis muscles of rats fed rodent chow after exercise were glycogen supercompensated (86.4 +/- 4.8 micromol/g wet wt) and showed no significant increase in maximally insulin-stimulated glucose transport above the sedentary control value despite an approximately twofold increase in GLUT-4. Fasting resulted in higher basal muscle glucose transport rates in both sedentary and trained rats but did not significantly increase maximally insulin-stimulated transport in the sedentary group. We conclude that carbohydrate feeding that results in muscle glycogen supercompensation prevents the increase in maximally insulin-stimulated glucose transport associated with an exercise training-induced increase in muscle GLUT-4.