An extensive series of experiments in this laboratory has shown that the binding of actin to rabbit skeletal muscle myosin subfragment-1 (a single-headed subfragment) can be described by a two-step model, with formation of a weakly bound complex, the A-state, followed by an isomerization to a more tightly bound complex, the R-state. In this paper, we report on additional experiments comparing the subfragment-1 with heavy meromyosin (a two-headed subfragment). Using a modeling approach, we have quantitated the two-step binding for each of the two heads. This indicates that the binding is cooperative and leads to a more complex view of the acto-myosin interaction than has previously been acknowledged. Implications for the dynamic behavior of the two heads during muscle contraction are discussed.