Background: Lens-specific transcriptional activation of the chicken alphaA-crystallin gene is controlled by the distal and proximal enhancers, alphaCE1 and alphaCE2, respectively. Analysis using specific monoclonal antibodies against purified alphaCE1-binding factor alphaCEF1 revealed that alphaCEF1 is composed of two distinct subunits.
Results: We have demonstrated that one of the subunits of alphaCEF1 is encoded by chicken ubiquitous transcription factor CP2 (cCP2), which is homologous to mouse CP2, and human CP2/LBP-1/LSF-1. Electrophoretic mobility shift assays and cross-linking experiments showed that alphaCEF1 and bacterially expressed cCP2 form a tetramer. Overexpression of cCP2 activates transcription through alphaCE1, but a mutant cCP2 lacking the DNA-binding domain reduced the transcription to basal levels. Although cCP2 binds to the CP2 template from the mouse alpha-globin promoter, it fails to promote transcription through this template. Element substitution experiments between alphaCE1 and the CP2 template revealed that the lens-specific enhancer activity of alphaCE1 is due to the 6 bp sequence (-139/-134; lens-specific element (LSE)) adjacent to the 3' of the cCP2 binding site within alphaCE1.
Conclusion: We have shown that the tetrameric transcription factor cCP2 is essential for lens-specific transcription of the chicken alphaA-crystallin gene, although it is ubiquitously expressed. We propose a model where cCP2 cooperates with a putative lens-specific factor which binds to LSE.