We hypothesized that blocking the induction of proinflammatory genes associated with endothelial cell (EC) activation, by inhibiting the transcription factor nuclear factor kappaB (NF-kappaB), would prolong survival of vascularized xenografts. Our previous studies have shown that inhibition of NF-kappaB by adenovirus-mediated overexpression of I kappaB alpha suppresses the induction of proinflammatory genes in EC. However, I kappaB alpha sensitizes EC to TNF-alpha-mediated apoptosis, presumably by suppressing the induction of the NF-kappaB-dependent anti-apoptotic genes A20, A1, manganese superoxide dismutase (MnSOD), and cellular inhibitor of apoptosis 2. We report here that adenovirus mediated expression of a dominant negative C-terminal truncation mutant of p65/RelA (p65RHD) inhibits the induction of proinflammatory genes, such as E-selectin, ICAM-1, VCAM-1, IL-8, and inducible nitric oxide synthase, in EC as efficiently as does I kappaB alpha. However, contrary to I kappaB alpha, p65RHD does not sensitize EC to TNF-alpha-mediated apoptosis although both inhibitors suppressed the induction of the anti-apoptotic genes A20, A1, and MnSOD equally well. We present evidence that this difference in sensitization of EC to apoptosis is due to the ability of p65RHD, but not I kappaB alpha, to inhibit the constitutive expression of c-myc, a gene involved in the regulation of TNF-alpha-mediated apoptosis. These data demonstrate that it is possible to block the expression of proinflammatory genes during EC activation by targeting NF-kappaB, without sensitizing EC to apoptosis and establishes the role of c-myc in controlling induction of apoptosis during EC activation. Finally, these data provide the basis for a potential approach to suppress EC activation in vivo in transgenic pigs to be used as donors for xenotransplantation.