Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

144 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Virtual and Augmented Reality in Cardiac Surgery.
Rad AA, Vardanyan R, Lopuszko A, Alt C, Stoffels I, Schmack B, Ruhparwar A, Zhigalov K, Zubarevich A, Weymann A. Rad AA, et al. Among authors: alt c. Braz J Cardiovasc Surg. 2022 Mar 10;37(1):123-127. doi: 10.21470/1678-9741-2020-0511. Braz J Cardiovasc Surg. 2022. PMID: 34236814 Free PMC article.
Central Extracorporeal Life Support With Left Ventricular Decompression to Berlin Heart Excor: A Reliable "Bridge to Bridge" Strategy in Crash and Burn Patients.
Weymann A, Farag M, Sabashnikov A, Fatullayev J, Zeriouh M, Schmack B, Arif R, Müller F, Alt C, Raake P, Prakash Patil N, Popov AF, Rüdiger Simon A, Karck M, Ruhparwar A; Heidelberg-Cologne-Harefield Cardiothoracic Transplantation & Mechanical Circulatory Support Outcomes Research Group. Weymann A, et al. Among authors: alt c. Artif Organs. 2017 Jun;41(6):519-528. doi: 10.1111/aor.12792. Epub 2016 Nov 8. Artif Organs. 2017. PMID: 27862040
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L; Reader study level-I and level-II Groups; Alt C, Arenbergerova M, Bakos R, Baltzer A, Bertlich I, Blum A, Bokor-Billmann T, Bowling J, Braghiroli N, Braun R, Buder-Bakhaya K, Buhl T, Cabo H, Cabrijan L, Cevic N, Classen A, Deltgen D, Fink C, Georgieva I, Hakim-Meibodi LE, Hanner S, Hartmann F, Hartmann J, Haus G, Hoxha E, Karls R, Koga H, Kreusch J, Lallas A, Majenka P, Marghoob A, Massone C, Mekokishvili L, Mestel D, Meyer V, Neuberger A, Nielsen K, Oliviero M, Pampena R, Paoli J, Pawlik E, Rao B, Rendon A, Russo T, Sadek A, Samhaber K, Schneiderbauer R, Schweizer A, Toberer F, Trennheuser L, Vlahova L, Wald A, Winkler J, Wölbing P, Zalaudek I. Haenssle HA, et al. Among authors: alt c. Ann Oncol. 2018 Aug 1;29(8):1836-1842. doi: 10.1093/annonc/mdy166. Ann Oncol. 2018. PMID: 29846502 Free article.
Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
Haenssle HA, Fink C, Toberer F, Winkler J, Stolz W, Deinlein T, Hofmann-Wellenhof R, Lallas A, Emmert S, Buhl T, Zutt M, Blum A, Abassi MS, Thomas L, Tromme I, Tschandl P, Enk A, Rosenberger A; Reader Study Level I and Level II Groups. Haenssle HA, et al. Ann Oncol. 2020 Jan;31(1):137-143. doi: 10.1016/j.annonc.2019.10.013. Ann Oncol. 2020. PMID: 31912788 Free article.
144 results