Purpose: This study aims to evaluate the accuracy of four kidney depth measurement methods-nuclear medicine tomography, nuclear medicine lateral scanning, ultrasound, and Tonnesen's formula-based estimation-using CT measurements as the reference standard. Additionally, it investigates the feasibility of utilizing nuclear medicine tomography and lateral scanning for measuring kidney depth in 99mTc-DTPA renal dynamic imaging.
Methods: Hollow kidney phantoms mimicking the shape and volume of adult kidneys were 3D printed and filled with 99mTcO4- solution. These phantoms were then subjected to lateral scanning and nuclear medicine tomography using CZT (cadmium-zinc-telluride) SPECT/CT to determine the optimal post-processing method. Forty patients who underwent renal dynamic imaging were recruited for the study. Renal depths were derived from ultrasound, lateral imaging, nuclear medicine tomography, formula-based estimation, and CT measurements. The renal depths obtained through these four methods were for correlation with CT-measured renal depths. Additionally, the absolute differences between renal depths obtained by each method and the CT standard were analyzed and compared across groups.
Results: Using kidney phantoms, nuclear medicine tomography images were processed with a Butterworth filter (cutoff frequency = 0.6), and renal outlines in lateral images was manually delineated. In the clinical validation phase, correlation coefficients indicated strong associations between renal depths measured by nuclear medicine tomography (left kidney: R = 0.885, P < 0.05; right kidney: R = 0.927, P < 0.05) and lateral scanning (left kidney: R = 0.933, P < 0.05; right kidney: R = 0.956, P < 0.05) compared to CT measurements. The difference in kidney depth between nuclear medicine tomography and CT measurements were the smallest and statistically significant (left kidney: 0.69 ± 0.51; right kidney: 0.58 ± 0.41, P < 0.05).
Conclusion: Using ordered subset expectation maximization (OSEM) in conjunction with a Butterworth filter (fc = 0.6) as the post-processing method, nuclear medicine tomography enables more accurate renal depth measurements without increasing the radiation dose to patients.
Keywords: 3D printing; CZT SPECT/CT; Filter; Image post-processing; Phantom imaging; Renal depth; Renal dynamic imaging.
© 2024. The Author(s).