Effects of Ciprofloxacin on the Production and Composition of Cellular Microcystins in Microcystis aeruginosa

Toxics. 2024 Oct 19;12(10):759. doi: 10.3390/toxics12100759.

Abstract

Antibiotics can affect the photosynthetic system of Microcystis, potentially altering the balance of carbon and nitrogen, which may influence the synthesis of different microcystin (MC) congeners. However, the regulatory mechanisms by which antibiotics affect the synthesis of various MC congeners in Microcystis remain unknown. In this study, the effects of ciprofloxacin (CIP) on the growth, carbon and nitrogen balance, amino acid composition, mcyB gene expression, and production of different MC congeners were investigated in two toxin-producing strains of Microcystis aeruginosa. The results show that CIP exposure significantly inhibited the growth of both strains, achieving an inhibition rate of 71.75% in FACHB-315 and 41.13% in FACHB-915 at 8 μg/L CIP by the end of the cultivation. The intracellular C:N ratio in FACHB-315 increased by 51.47%, while no significant change was observed in FACHB-915. The levels of leucine, tyrosine, and arginine, as identified and quantified by UPLC-MS/MS, were significantly altered at higher CIP concentrations, leading to a reduction in leucine percentage and a notable increase in tyrosine in both strains, which contributed to a reduction in MC-LR proportion and an increase in MC-RR and MC-YR proportion. Additionally, the expression of the mcyB gene was upregulated by as much as 5.57 times, indicating that antibiotic stress could enhance MC synthesis at the genetic level, contributing to the increased toxicity of cyanobacteria. These findings emphasize the significant role of CIP in the biochemical processes of M. aeruginosa, particularly in MC synthesis and composition, providing valuable insights into the ecological risks posed by antibiotics and harmful cyanobacteria.

Keywords: Microcystis aeruginosa; fluoroquinolones; microcystins; production and composition.