Background: Macrophage-carried nanoformulated catalase ('nanozyme') attenuates neuroinflammation and protects nigrostriatal neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. This is facilitated by effective enzyme transfer from blood-borne macrophages to adjacent endothelial cells and neurons leading to the decomposition of reactive oxygen species.
Materials & methods: We examined the intra- and inter-cellular trafficking mechanisms of nanozymes by confocal microscopy. Improved neuronal survival mediated by nanozyme-loaded macrophages was demonstrated by fluorescence-activated cell sorting.
Results: In macrophages, nanozymes were internalized mainly by clathrin-mediated endocytosis then trafficked to recycling endosomes. The enzyme is subsequently released in exosomes facilitated by bridging conduits. Nanozyme transfer from macrophages to adjacent cells by endocytosis-independent mechanisms diffusing broadly throughout the recipient cells. In contrast, macrophage-free nanozymes were localized in lysosomes following endocytic entry.
Conclusion: Facilitated transfer of nanozyme from cell to cell can improve neuroprotection against oxidative stress commonly seen during neurodegenerative disease processes.