Characterization of the Volatiles and Quality of Hybrid Grouper and Their Relationship to Changes of Microbial Community During Storage at 4 °C

Molecules. 2020 Feb 13;25(4):818. doi: 10.3390/molecules25040818.

Abstract

To investigate the effects of spoilage bacteria on aquatic product quality and volatile organic compounds (VOCs) in hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂), the physical conditions were evaluated, the chemical changes including color, total volatile base nitrogen (TVB-N), VOCs, and free amino acids (FFAs) were determined, and biological profiles were made through microbial community (total viable counts (TVC), 16S rRNA gene amplification sequencing, and next-generation sequencing (NGS) technology on hybrid grouper, which were stored at 4 °C for 10 days. The results showed that the whiteness and TVB-N of grouper increased throughout the storage period. The contents of glycine, alanine, and total free amino acid decreased with the microbial activity towards the end of the study period. At the end of storage, the TVC reached 9.0 log10 (CFU/g). Seventy eight strains of bacteria were isolated from the hybrid grouper, most of which were shown to be Pseudomonas spp., after 16S rRNA sequencing. The results of the NGS test showed that the diversity of dominant bacteria decreased with time; Pseudomonas azotoformans was the dominant spoilage bacteria at the end of storage. The VOCs of fish and bacteria in the grouper's spoilage process were presented in headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). Twenty eight compounds were identified in hybrid grouper, among which alcohol and aldehyde were used to characterize freshness, both of which were not only related to the overall flavor of the grouper, but were also affected by microbial activity. However, due to the complexity of microbial communities in aquatic products, the correlation between community changes and VOCs needs further research. This study provides insights into the correlation between VOCs and specific spoilage organisms (SSOs) through the analysis of the microbial community and VOCs.

Keywords: Pseudomonas; VOCs; hybrid grouper; microbiota diversity.

MeSH terms

  • Amino Acids / genetics
  • Amino Acids / metabolism*
  • Gas Chromatography-Mass Spectrometry
  • High-Throughput Nucleotide Sequencing
  • Microbiota / genetics
  • Microbiota / physiology*
  • Nitrogen / metabolism
  • Phylogeny
  • Pseudomonas / genetics
  • Pseudomonas / metabolism
  • Pseudomonas syringae / genetics
  • Pseudomonas syringae / metabolism
  • RNA, Ribosomal, 16S / genetics
  • Volatile Organic Compounds / metabolism

Substances

  • Amino Acids
  • RNA, Ribosomal, 16S
  • Volatile Organic Compounds
  • Nitrogen

Supplementary concepts

  • Pseudomonas azotoformans